NOTE: This technique only gives a complete list of intersection points

if the periods of $f(\theta)$ and $g(\theta)$ both have the form $\frac{2\pi}{2}$

where n is an integer (may be different values of n for each function)

NOTE: Both functions in our example have a period of $\frac{2\pi}{2}$

1. Solve $f(\theta) = 0$ and $g(\theta) = 0$ separately for $\theta \in [0, 2\pi]$. If both equations have solutions, then the graphs intersect at the pole (though not necessarily at the same value of θ).

> $\cos 2\theta = 0 \qquad 1 + \cos 2\theta = 0 \Rightarrow \cos 2\theta = -1$ $0 \le \theta \le 2\pi \qquad \Rightarrow \qquad 0 \le 2\theta \le 4\pi \qquad 0 \le \theta \le 2\pi \qquad \Rightarrow \qquad 0 \le 2\theta \le 4\pi$ $2\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2} \Rightarrow \qquad \theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \qquad 2\theta = \pi, 3\pi \qquad \Rightarrow \qquad \theta = \frac{\pi}{2}, \frac{3\pi}{2}$

Both curves pass through the pole, so they intersect at the pole

2. Solve $f(\theta) = g(\theta)$ for $\theta \in [0, 2\pi]$. If $\theta = \theta_1$, then the graphs intersect at the point $(r, \theta) = (f(\theta_1), \theta_1) = (g(\theta_1), \theta_1)$.

 $\cos 2\theta = 1 + \cos 2\theta \implies 0 = 1$

No intersection where polar co-ordinates are the same on both curves

3. Rewrite $r = f(\theta)$ by substituting $(r, \theta) = (-r, \pi + \theta)$. That is, $r = f(\theta)$ becomes $-r = f(\pi + \theta)$ ie. $r = -f(\pi + \theta)$. Solve $-f(\pi + \theta) = g(\theta)$ for $\theta \in [0, \pi]$. If $\theta = \theta_2$, then the graphs intersect at the point $(r, \theta) = (f(\pi + \theta_2), \pi + \theta_2)$ on the graph of $r = f(\theta)$ and the point $(r, \theta) = (g(\theta_2), \theta_2)$ on the graph of $r = g(\theta)$. (These are the same point with different polar coordinates.)

$-r = \cos 2(\pi + \theta)$	\Rightarrow	$r = -\cos(2\pi + 2\theta) = -\cos 2\theta$
$-\cos 2\theta = 1 + \cos 2\theta$	\Rightarrow	$\cos 2\theta = -\frac{1}{2}$
$0 \le heta \le \pi$	\Rightarrow	$0 \le 2\theta \le 2\pi$
$2\theta = \frac{2\pi}{3}, \frac{4\pi}{3}$	\Rightarrow	$\theta = \frac{\pi}{3}, \frac{2\pi}{3}$

The curves intersect at 2 points

At $\theta = \pi + \frac{\pi}{3} = \frac{4\pi}{3}$	on $r = \cos 2\theta$,	$r = \cos 2(\frac{4\pi}{3}) = \cos \frac{8\pi}{3} = -\frac{1}{2}$ and		
at $\theta = \frac{\pi}{3}$	on $r = 1 + \cos 2\theta$,	$r = 1 + \cos 2(\frac{\pi}{3}) = 1 + \cos \frac{2\pi}{3} = \frac{1}{2}$		
$\left(-\frac{1}{2},\frac{4\pi}{3}\right)$ and $\left(\frac{1}{2},\frac{\pi}{3}\right)$ are different polar coordinates for the same point				

At $\theta = \pi + \frac{2\pi}{3} = \frac{5\pi}{3}$	on $r = \cos 2\theta$,	$r = \cos 2(\frac{5\pi}{3}) = \cos \frac{10\pi}{3} = -\frac{1}{2}$ and		
at $\theta = \frac{2\pi}{3}$	on $r = 1 + \cos 2\theta$,	$r = 1 + \cos 2(\frac{2\pi}{3}) = 1 + \cos \frac{4\pi}{3} = \frac{1}{2}$		
$\left(-\frac{1}{2},\frac{5\pi}{3}\right)$ and $\left(\frac{1}{2},\frac{2\pi}{3}\right)$ are different polar coordinates for the same point				

4. Rewrite $r = g(\theta)$ by substituting $(r, \theta) = (-r, \pi + \theta)$. That is, $r = g(\theta)$ becomes $-r = g(\pi + \theta)$ ie. $r = -g(\pi + \theta)$. Solve $f(\theta) = -g(\pi + \theta)$ for $\theta \in [0, \pi]$. If $\theta = \theta_3$, then the graphs intersect at the point $(r, \theta) = (f(\theta_3), \theta_3)$ on the graph of $r = f(\theta)$ and the point $(r, \theta) = (g(\pi + \theta_3), \pi + \theta_3)$ on the graph of $r = g(\theta)$. (These are the same point with different polar coordinates.)

 $-r = 1 + \cos 2(\pi + \theta) \implies r = -1 - \cos(2\pi + 2\theta) = -1 - \cos 2\theta$ $\cos 2\theta = -1 - \cos 2\theta \implies \cos 2\theta = -\frac{1}{2}$ $0 \le \theta \le \pi \implies 0 \le 2\theta \le 2\pi$ $2\theta = \frac{2\pi}{3}, \frac{4\pi}{3} \implies \theta = \frac{\pi}{3}, \frac{2\pi}{3}$

The curves intersect at 2 points

At $\theta = \frac{\pi}{3}$	on $r = \cos 2\theta$,	$r = \cos 2(\frac{\pi}{3}) = \cos \frac{2\pi}{3} = -\frac{1}{2}$ and		
at $\theta = \pi + \frac{\pi}{3} = \frac{4\pi}{3}$	on $r = 1 + \cos 2\theta$,	$r = 1 + \cos 2(\frac{4\pi}{3}) = 1 + \cos \frac{8\pi}{3} = \frac{1}{2}$		
$(-\frac{1}{2},\frac{\pi}{3})$ and	$\left(\frac{1}{2},\frac{4\pi}{3}\right)$ are different polar	r coordinates for the same point		
At $\theta = \frac{2\pi}{3}$	on $r = \cos 2\theta$,	$r = \cos 2(\frac{2\pi}{3}) = \cos \frac{4\pi}{3} = -\frac{1}{2}$ and		
at $\theta = \pi + \frac{2\pi}{3} = \frac{5\pi}{3}$	on $r = 1 + \cos 2\theta$,	$r = 1 + \cos 2(\frac{5\pi}{3}) = 1 + \cos \frac{10\pi}{3} = \frac{1}{2}$		
$\left(-\frac{1}{2},\frac{2\pi}{3}\right)$ and $\left(\frac{1}{2},\frac{5\pi}{3}\right)$ are different polar coordinates for the same point				

The lighter graph below is $r = \cos 2\theta$. The darker graph below is $r = 1 + \cos 2\theta$.

The dots are the intersection points, and the numbers next to them are the step number (in the process above) at which those points were found.

