NOTE: This technique only gives a complete list of intersection points

if the periods of $f(\theta)$ and $g(\theta)$ both have the form $\frac{2 \pi}{n}$ where n is an integer (may be different values of n for each function)

NOTE: Both functions in our example have a period of $\frac{2 \pi}{2}$

1. Solve $f(\theta)=0$ and $g(\theta)=0$ separately for $\theta \in[0,2 \pi]$.

If both equations have solutions, then the graphs intersect at the pole (though not necessarily at the same value of θ).

$$
\begin{array}{lll}
\cos 2 \theta=0 & & \\
0 \leq \theta \leq 2 \pi & \Rightarrow & 0 \leq 2 \theta \leq 4 \pi \\
2 \theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2} & \Rightarrow & \theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}
\end{array}
$$

$$
\begin{array}{lll}
1+\cos 2 \theta=0 & \Rightarrow & \cos 2 \theta=-1 \\
0 \leq \theta \leq 2 \pi & \Rightarrow & 0 \leq 2 \theta \leq 4 \pi \\
2 \theta=\pi, 3 \pi & \Rightarrow & \theta=\frac{\pi}{2}, \frac{3 \pi}{2}
\end{array}
$$

Both curves pass through the pole, so they intersect at the pole
2. Solve $f(\theta)=g(\theta)$ for $\theta \in[0,2 \pi]$.

If $\theta=\theta_{1}$, then the graphs intersect at the point $(r, \theta)=\left(f\left(\theta_{1}\right), \theta_{1}\right)=\left(g\left(\theta_{1}\right), \theta_{1}\right)$.

$$
\cos 2 \theta=1+\cos 2 \theta \Rightarrow 0=1
$$

No intersection where polar co-ordinates are the same on both curves
3. Rewrite $r=f(\theta)$ by substituting $(r, \theta)=(-r, \pi+\theta)$.

That is, $r=f(\theta)$ becomes $-r=f(\pi+\theta)$ ie. $r=-f(\pi+\theta)$.
Solve $-f(\pi+\theta)=g(\theta)$ for $\theta \in[0, \pi]$.
If $\theta=\theta_{2}$, then the graphs intersect at
the point $(r, \theta)=\left(f\left(\pi+\theta_{2}\right), \pi+\theta_{2}\right)$ on the graph of $r=f(\theta)$
and the point $(r, \theta)=\left(g\left(\theta_{2}\right), \theta_{2}\right)$ on the graph of $r=g(\theta)$.
(These are the same point with different polar coordinates.)

$$
\begin{array}{ll}
-r=\cos 2(\pi+\theta) & \Rightarrow r=-\cos (2 \pi+2 \theta)=-\cos 2 \theta \\
-\cos 2 \theta=1+\cos 2 \theta & \Rightarrow \cos 2 \theta=-\frac{1}{2} \\
0 \leq \theta \leq \pi & \Rightarrow 0 \leq 2 \theta \leq 2 \pi \\
2 \theta=\frac{2 \pi}{3}, \frac{4 \pi}{3} & \Rightarrow \theta=\frac{\pi}{3}, \frac{2 \pi}{3}
\end{array}
$$

The curves intersect at 2 points

$$
\begin{array}{lll}
\text { At } \theta=\pi+\frac{\pi}{3}=\frac{4 \pi}{3} & \text { on } r=\cos 2 \theta, & r=\cos 2\left(\frac{4 \pi}{3}\right)=\cos \frac{8 \pi}{3}=-\frac{1}{2} \text { and } \\
\text { at } \theta=\frac{\pi}{3} & \text { on } r=1+\cos 2 \theta, & r=1+\cos 2\left(\frac{\pi}{3}\right)=1+\cos \frac{2 \pi}{3}=\frac{1}{2}
\end{array}
$$

$\left(-\frac{1}{2}, \frac{4 \pi}{3}\right)$ and $\left(\frac{1}{2}, \frac{\pi}{3}\right)$ are different polar coordinates for the same point

$$
\begin{array}{lll}
\text { At } \theta=\pi+\frac{2 \pi}{3}=\frac{5 \pi}{3} & \text { on } r=\cos 2 \theta, & r=\cos 2\left(\frac{5 \pi}{3}\right)=\cos \frac{10 \pi}{3}=-\frac{1}{2} \text { and } \\
\text { at } \theta=\frac{2 \pi}{3} & \text { on } r=1+\cos 2 \theta, & r=1+\cos 2\left(\frac{2 \pi}{3}\right)=1+\cos \frac{4 \pi}{3}=\frac{1}{2}
\end{array}
$$

4. Rewrite $r=g(\theta)$ by substituting $(r, \theta)=(-r, \pi+\theta)$.

That is, $r=g(\theta)$ becomes $-r=g(\pi+\theta)$ ie. $r=-g(\pi+\theta)$.
Solve $f(\theta)=-g(\pi+\theta)$ for $\theta \in[0, \pi]$.
If $\theta=\theta_{3}$, then the graphs intersect at
the point $(r, \theta)=\left(f\left(\theta_{3}\right), \theta_{3}\right)$ on the graph of $r=f(\theta)$
and the point $(r, \theta)=\left(g\left(\pi+\theta_{3}\right), \pi+\theta_{3}\right)$ on the graph of $r=g(\theta)$.
(These are the same point with different polar coordinates.)

$$
\begin{array}{ll}
-r=1+\cos 2(\pi+\theta) & \Rightarrow r=-1-\cos (2 \pi+2 \theta)=-1-\cos 2 \theta \\
\cos 2 \theta=-1-\cos 2 \theta & \Rightarrow \cos 2 \theta=-\frac{1}{2} \\
0 \leq \theta \leq \pi & \Rightarrow 0 \leq 2 \theta \leq 2 \pi \\
2 \theta=\frac{2 \pi}{3}, \frac{4 \pi}{3} & \Rightarrow \theta=\frac{\pi}{3}, \frac{2 \pi}{3}
\end{array}
$$

The curves intersect at 2 points

$$
\begin{array}{lll}
\text { At } \theta=\frac{\pi}{3} & \text { on } r=\cos 2 \theta, & r=\cos 2\left(\frac{\pi}{3}\right)=\cos \frac{2 \pi}{3}=-\frac{1}{2} \text { and } \\
\text { at } \theta=\pi+\frac{\pi}{3}=\frac{4 \pi}{3} & \text { on } r=1+\cos 2 \theta, & r=1+\cos 2\left(\frac{4 \pi}{3}\right)=1+\cos \frac{8 \pi}{3}=\frac{1}{2}
\end{array}
$$

$\left(-\frac{1}{2}, \frac{\pi}{3}\right)$ and $\left(\frac{1}{2}, \frac{4 \pi}{3}\right)$ are different polar coordinates for the same point

$$
\begin{array}{lll}
\text { At } \theta=\frac{2 \pi}{3} & \text { on } r=\cos 2 \theta, & r=\cos 2\left(\frac{2 \pi}{3}\right)=\cos \frac{4 \pi}{3}=-\frac{1}{2} \text { and } \\
\text { at } \theta=\pi+\frac{2 \pi}{3}=\frac{5 \pi}{3} & \text { on } r=1+\cos 2 \theta, & r=1+\cos 2\left(\frac{5 \pi}{3}\right)=1+\cos \frac{10 \pi}{3}=\frac{1}{2}
\end{array}
$$

$\left(-\frac{1}{2}, \frac{2 \pi}{3}\right)$ and $\left(\frac{1}{2}, \frac{5 \pi}{3}\right)$ are different polar coordinates for the same point

The lighter graph below is $r=\cos 2 \theta$.
The darker graph below is $r=1+\cos 2 \theta$.
The dots are the intersection points, and the numbers next to them are the step number (in the process above) at which those points were found.

